img
img
Enhanced enchondroma detection from x‐ray images using deep learning: A step towards accurate and cost‐effective diagnosis      
Yazarlar (8)
Şafak Aydın Şimşek
Türkiye
Ayhan Aydın
Ferhat Say
Ondokuz Mayıs Üniversitesi, Türkiye
Tolgahan Cengiz
Türkiye
Doç. Dr. Caner ÖZCAN Doç. Dr. Caner ÖZCAN
Karabük Üniversitesi, Türkiye
Mesut Öztürk
Türkiye
Erhan Okay
Türkiye
Korhan Özkan
Türkiye
Devamını Göster
Özet
This study investigates the automated detection of enchondromas, benign cartilage tumors, from x-ray images using deep learning techniques. Enchondromas pose diagnostic challenges due to their potential for malignant transformation and overlapping radiographic features with other conditions. Leveraging a data set comprising 1645 x-ray images from 1173 patients, a deep-learning model implemented with Detectron2 achieved an accuracy of 0.9899 in detecting enchondromas. The study employed rigorous validation processes and compared its findings with the existing literature, highlighting the superior performance of the deep learning approach. Results indicate the potential of machine learning in improving diagnostic accuracy and reducing healthcare costs associated with advanced imaging modalities. The study underscores the significance of early and accurate detection of enchondromas for effective patient management and suggests avenues for further research in musculoskeletal tumor detection.
Anahtar Kelimeler
deep learning | Detectron2 | enchondromas | machine learning | x-ray
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Journal of Orthopaedic Research
Dergi ISSN 0736-0266 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 07-2024
Cilt No 42
Sayı 12
Sayfalar 2826 / 2834
Doi Numarası 10.1002/jor.25938
Makale Linki http://dx.doi.org/10.1002/jor.25938