img
img
An evaluation of powers of the negative spectrum of Schrödinger operator equation with a singularity at zero      
Yazarlar (1)
Prof. Dr. İlyas HAŞİMOĞLU Prof. Dr. İlyas HAŞİMOĞLU
Karabük Üniversitesi, Türkiye
Devamını Göster
Özet
In this study, we investigate the discreteness and finiteness of the negative spectrum of the differential operator L in the Hilbert space L2(H,[0,∞)), defined as Ly=−d2ydx2+A(A+I)x2y−Q(x)y, under the boundary condition y(0) = 0. In the case when the negative spectrum is finite, we obtain an evaluation for the sums of powers of the absolute values of negative eigenvalues. The obtained result is applied to a class of equations of mathematical physics.
Anahtar Kelimeler
eigenvalues | Hilbert space | operator-differential equations | Schrödinger operator | spectrum
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı BOUNDARY VALUE PROBLEMS
Dergi ISSN 1687-2770 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Makale Dili İngilizce
Basım Tarihi 11-2017
Cilt No 2017
Sayı 160
Sayfalar 1 / 15
Doi Numarası 10.1186/s13661-017-0889-3